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A probe-corrected theory is presented for computing the acoustic far fields of transducers and
scatterers from measurements of near fields on a cylindrical surface. The near-field data is truncated
at the top, bottom, and angular edges of the scan cylinder. These truncation edges can cause
inaccuracies in the computed far fields. Correction techniques are developed for the top and bottom
truncation edges. The cylindrical wave expansions automatically apply an angular taper to the
near-field data that reduces the effect of the angular truncation edges. The taper function depends on
the probe and the angular sample spacing. The theory is validated through numerical examples
involving a point source and a baffled piston transducer probe. © 2006 Acoustical Society of

America. [DOL: 10.1121/1.2151789]

PACS number(s): 43.20.Rz, 43.20.Bi, 43.20.Ye [GCG]

I. INTRODUCTION

Probe-corrected near-field techniques have been widely
used for the past 40 years to characterize antennas and trans-
ducers from measurements on planar,l‘5 cylindrical,ﬁ_m and
spherical“'zo scanning surfaces. The field of the antenna or
transducer is first measured with a known probe on the scan-
ning surface in the near field. Probe-corrected formulas are
then applied to the measured near field to get the desired far
field of the antenna or transducer. The measurements are
typically performed in anechoic chambers. The electromag-
netic probe-corrected formulas have been derived and widely
implemented for scanning on planar, cylindrical, and spheri-
cal surfaces. The corresponding acoustic formulas have only
been derived for scanning on planar and spherical surfaces.

The far field of electromagnetic and acoustic scatterers
can also be determined from near-field measurements in
anechoic chambers.” A far-field source or a compact-
range reflector can provide the plane-wave field required to
illuminate or insonify the scatterers. To compute the scat-
tered far field, the incident field and background interactions
must be extracted from the measured total field. The simplest
method for eliminating these field contributions is standard
background subtraction which involves two measurements.
The first measurement is carried out with the scatterer
present, and the second measurement is carried out with the
scatterer removed. The results of the two measurements are
then subtracted to get an approximation for the scattered near
field, which can be processed with the probe-corrected for-
mulas to get the scattered far field.

It is appropriate to mention the related area of research
known as near-field acoustical holography, where near-field
measurements are employed to backpropagate the pressure
field in space and time toward the source.”*? One can
achieve super-resolution with near-field holography when
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part of the evanescent spectrum is captured during the scan.
In this paper, however, we are concerned only with comput-
ing the field of the source outside the scanning surface and
do not attempt to backpropagate the near-field data.

In this paper we derive the probe-corrected formulas for
cylindrical near-field scanning that can be used to compute
acoustic far fields of transducers and scatterers. We present
computation schemes and sampling theorems that allow the
far fields to be computed from sampled values of the probe
output on the scan cylinder. In practice, the measurements
are carried with a mechanical scanner over a truncated scan
cylinder that covers only a limited region of the infinite scan
cylinder that is used for the derivation. Therefore we care-
fully examine the probe-corrected formulas to determine
how truncation edges may affect the far-field accuracy. We
develop edge-correction techniques that reduce the far-field
errors caused by truncation and show that an angular taper
function is automatically applied to the probe output. The
results of the paper are validated through numerical ex-
amples involving a point source and a baffled piston trans-
ducer probe with a circular cross section.

The paper is organized as follows. In Sec. II we derive
the formulas for cylindrical near-field scanning of acoustic
fields with an arbitrary known probe. These formulas express
the field of the source region in terms of the probe receiving
coefficients and the probe output over an infinite scan cylin-
der. For use in the numerical simulations, we derive exact
expressions for the probe output when the probe is a baffled
circular receiving piston transducer.

We consider a truncated scan cylinder in Sec. III and
develop edge-corrected formulas that compensate for the
end-point contributions to the far field from the top and bot-
tom edges. We further study the angular taper function that is
inherent in the cylindrical expansions. In Sec. IV the far-field
formulas are converted into discrete computation schemes.
In Sec. V we consider a point source at the origin to illustrate
the implications of truncating the scan cylinder. Section VI
presents conclusions.

© 2006 Acoustical Society of America
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FIG. 1. Probe measures the field of the source on the truncated scan cylinder
given by p=a, —29<z<zy, < P<27—¢h.

Il. THEORY OF CYLINDRICAL NEAR-FIELD
SCANNING

We now derive the formulas for computing the acoustic
field of a source of finite extent from either the pressure field
(Sec. IL A) or from the output of a known probe (Sec. II B)
on a scan cylinder. The source can either be a transducer or a
scatterer. For scatterers we assume that background subtrac-
tion has been performed, so that the incident field and back-
ground reflections have been removed. The part of space not
occupied by the sources is a linear lossless fluid in which the
acoustic field can be fully described by its pressure field
p(r).

As shown in Fig. 1, the field is measured on the cylinder
p=a, where p is the cylindrical coordinate that equals the
distance to the z axis. The scan cylinder in Fig. 1 is truncated
and covers the region —zy<z<zj, dy=<d<27— . For the
derivations of this section the scan cylinder is assumed infi-
nite (zp=+% and ¢,=0).

We define the minimum cylinder p=R;, such that the
maximum (supremum) value of the coordinate p for all
points on the source equals R_;,. Note that R;, depends on
the size of the source as well as on its location. For example,
the value of R_;, is equal to \/x%+ yl2 for a point source at
(x,y,2)=(x1,¥1,21). We assume that the scan cylinder en-
closes the minimum cylinder.

A. The far field in terms of the field on the scan
cylinder

The formulas that express the field from a confined
source in terms of the pressure on an enclosing cylinder will
be derived in this section from the standard cylindrical wave
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expansion. With ¢~ time dependence suppressed, the basic
outgoing solution p®)(r) to the scalar wave equation

(V2+kd)p(r) =0 0
is
P(o,$,2) = H (k p)e" €™, )

where k is the wave number, k, is a real parameter, n is an
integer, and

k,= k2~ k2 3)

is a complex parameter with non-negative real and imaginary
parts. Moreover, Hfll)(kpp) is the Hankel function of the first
kind and order n, and (p,¢,z) are the standard cylindrical
coordinates given in terms of rectangular coordinates (x,y,z)
as

z=2z. 4)

Outside the minimum cylinder of radius R, the field p(r)
of any source of finite extent can be expressed as a super-
position of the basis fields in (2) as?®

x=pcos¢, y=psin g,

+00 40
p(p, ¢,Z) = 2 ein¢ Fn(kZ)Hizl)(kpp)eikzzdkz’

n=—o -0

p=> Rmin’ (5)

where F,(k,) is the spectrum that characterizes the source.

The formula (5) determines the field everywhere outside
a cylinder of radius R;, in terms of an integration and a
summation involving the spectrum F,(k,). By applying the
method of stationary phase,29 one can show that for observa-
tion points far form the source the field can be expressed in
spherical coordinates as

2 eikr

+00
>, F,(kcos et immD12, (6)

n=-o0

p(r90,¢) -~

where (r, 8, ¢) are the standard spherical coordinates related
- . reclangular covidinates (x,y,z) through

x=rsinfcos¢, y=rsinfsind, z=rcosf. (7)

Unlike the general formula (5), the far-field formula (6) does
not involve an integration over k.

An expression for the spectrum F,(k,) in terms of the
field p(a, ¢,z) on the scan cylinder is obtained by multiply-
ing Eq. (5) by e"i""%e~:7 and integrating over the scan cyl-
inder

1 +00 21 Cinds iz

a> Rmin, (8)
where we have used the orthogonality relations
400
f e®kz = 2w Sk, — k.) 9)
and
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FIG. 2. Probe situated in a probe coordinate system. The input and output of
the probe are determined by the mode amplitudes a, and b, respectively.
The total field outside the enclosing cylinder for the probe is described in
terms of outgoing and standing waves.

27
J ei(n_nl)¢d¢= 2777
0 0, n#n'.

n=n'

(10)

Even though the radius a of the scan cylinder appears on the
right-hand side of the expression (8) for spectrum, the ex-
pression (8) is independent of a. The formulas (5), (6), and
(8) express the field everywhere outside a minimum cylinder
that encloses the sources in terms of the field on the scan
cylinder.

B. Far field in terms of the probe output on the scan
cylinder

We shall next present a simple straightforward deriva-
tion of the probe-corrected formulas that express the field
outside the scan cylinder in terms of the output of a known
probe on the scan cylinder. We shall employ the outgoing
and standing wave basis functions of the source scattering
matrix formulation. The schematic for the cylindrical near-
field measurement system is shown in Fig. 1. First we char-
acterize the probe with respect to cylindrical waves.

1. Characterization of the probe

Start by defining a probe coordinate system in which the
probe is fixed as shown in Fig. 2. The origin of this coordi-
nate system is the reference point of the probe. The orienta-
tion of the probe with respect to a global coordinate system
is defined in terms of the orientation of the probe coordinate
system with respect to the global coordinate system. For cy-
lindrical scanning we assume that the z axis of the probe
coordinate system is parallel to the z axis of the global coor-
dinate system that is used to describe the scanning geometry.

The probe is attached to a waveguide that supports only
one propagating mode. The input to the probe is determined
by the mode amplitude a, and the output of the probe is
determined by the mode amplitude b,. We refer to b, as the
probe output and assume that the probe waveguide is per-
fectly matched (a,=0) when the probe measures the field of
the source.

The field outside the cylinder in Fig. 2 that encloses the
probe can be described in terms of the outgoing waves

794  J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006

PP p.4.2) = Bk p)e™ e (11)
and the standing waves
PV(p, 4,2) =T, (k p)ePe™s, (12)

where J,(k,p) is the Bessel function of order n. The probe
receiving coefficients can now be defined as follows. If the
total field outside the enclosing cylinder is the single stand-
ing cylindrical wave J,(k,p)e"?e’*#, the probe output is
given by b,=C,(kz), where C,(kz) are the probe receiving
coefficients.

The probe receiving coefficients will now be expressed
in terms of the probe’s plane-wave receiving characteristic
R,(k,,k,), defined to be the probe output when the incident
field is the plane-wave e"k+5 ), with k7 +Kk}+k.=k”. The
plane-wave receiving characteristic, which is also defined
with the probe located in the probe coordinate system, can be
expressed both in terms of the plane-wave transmitting spec-
trum and the far-field pattern of the probe when the probe is
a reciprocal electroacoustic transducer.*®> For example, if
the probe is reciprocal and its far field is expressed in terms
of a far-field pattern F,(6,¢) as p(r)~F,(6,$)e™ /r, the
receiving characteristic is

Fplm— 0,7+ )

R,(k cos ¢ sin 6,k sin ¢ sin 6) =— -
1Y ,pmo

]

(13)

where Y, is the characteristic admittance for the propagating
mode of the probe waveguide feed and p,, is the mass den-
sity of the undisturbed fluid.

With the angles ¢, and 6, defined such that %,
=k,cos ¢y, k,=ksin ¢, and k =k cos 6, the cylindrical ex-
pansion of the incident plane-wave e/5*+hy+k2) js

4o
ei(kxx+kyy+kzz) - 2 ian(kpp)ein(¢_¢k)eikzz.

n=—0

(14)

Note that k£, <0 and 7/2 < ¢, <37/2 for plane-wave com-
ponents generated by sources that are located in the half
space x>(. By inspection, the plane-wave receiving charac-
teristic is found to be

400

Ry(kpky) = X "Cylk)e %,

n=—0

(15)

which in turn yields the desired expression for the receiving
coefficients

-1

27
! - in
C,(k,) = pys J R, (k,cos ¢,k sin dy)e Pid . (16)
0

As will be demonstrated below, the far field of the source
can be determined from the plane-wave receiving character-
istic in the region of propagating waves where k,, k,, and k,
are real.

2. Piston probe

We consider now a baffled circular receiving piston
transducer whose piston resides in the y-z plane of the probe
coordinate system. For brevity we shall refer to this receiv-
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3. Probe-corrected formulas

The probe-corrected formulas for the field of the source
will be derived in this section using a straightforward ap-
proach that involves two steps. First, an expression is derived
for the probe output b,(a,¢,z) in terms of the unknown
expansion coefficients F,,(k,) for the source and the known
probe receiving coefficients C,(k,). Second, this expression
for the probe output is inverted to get the expansion coeffi-
cients of the source in terms of the probe receiving coeffi-
cients and the probe output.

Multiple interactions between the source and the probe
will be neglected. That is, the field scattered by the probe,
rescattered by the source, and returned to the probe, does not
change the output of the probe. The effect of multiple inter-
actions can be taken into account formally by the source
scattering matrix formulation.® However, this formulation
does not provide quantitative information about these mul-
tiple interactions, and to obtain useful probe-corrected for-
mulas they have to be neglected.

To derive an expression for the probe output when the
probe is illuminated by the field of the source, we need to
express the cylindrical waves in Eq. (5) in terms of cylindri-
cal waves defined in the probe coordinate system. To distin-
guish between the global coordinate system (in which the
scan cylinder is given by p=a) and the probe coordinate
system (in which the probe is fixed) we attach primes to all
coordinates defined with respect to the probe coordinate sys-
tem.

Assume that the reference point of the probe is at
(a, &,,z;) on the scan cylinder. Then we need to transform
the cylindrical wave functions in Eq. (5) into cylindrical
wave functions in the probe coordinate system, which is cen-
tered at (a, ¢,z,) with its x axis pointing toward the center
of the global coordinate system. To achieve this transforma-
tion we use the rotation-translation formula for cylindrical
wave functions

J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006

FIG. 5. Geometry for translation and
rotation of cylindrical wave functions.

+00
HY(p)e™? = (= 1) >, HO (p)T (0™, p,>p,

n=—o

(25)

where the primed quantities are defined in the probe coordi-
nate system and the unprimed quantities are defined in the
global coordinate system, as shown in Fig. 5.

Equation (25) can be inserted into expression (5) to get
the following formula for the pressure on the scan cylinder:

p(a’ ¢s’zs) = z (— l)meim‘jzs

+o0 400
X2 | [alkp e e 1, (k)HD,,
X (k,a)e™<sdk,, (26)

which expresses the outgoing waves that emanate from the
source in the global coordinate system in terms of standing
waves J,(k,p")e"? e in the probe coordinate system.
From the definition of the probe receiving coefficients, we
see that the total probe output is

bla. )= 2 (-1 S | Cuk)Fulk)HY,
X (k a)e™ssdk,. (27)

The expression (27) is easily inverted by use of the orthogo-
nality relations (9) and (10) to get the final probe-corrected
expression for the spectrum

- Fu(k) =Dk, (k,),

— o8

where
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FIG. 6. Correction factor at k,=0 for piston probes with 2=0.1\, h=0.61\, =\, and A=2\ that measure the field on a scan cylinder of radius a—~30A\.

+0  ~2q7
L(k;) = f f by(a, dpz)e e Esdpdz,  (29)
—00 0

is a Fourier integral of the probe output over the scan cylin-
der and

_ (G Vi (30)

4 C n(kz)Hfll—)m(kpa)

n=—0

Dy (k) =

is a correction factor that depends on the probe receiving
coefficients and the scan cylinder radius. The far field of the
source is expressed in Eq. (6) in terms of the expansion
coefficients F,(k,) evaluated at k,=k cos 6, and the formula
(16) determines the probe receiving coefficients C,(k,) in
terms of the plane-wave receiving characteristic of the
probe. For an ideal probe whose output equals the pres-
sure (C,=0 for n#0 and Cy=1), Eq. (28) reduces cor-
rectly to the nonprobe-corrected formula (8).

Figure 6 shows the magnitude in decebels of the correc-
tion factor (30) for piston probes with h=0.1\, h=0.61\, k
=\, and A=2\. The scan cylinder radius is a=30\ and the
observation direction is §=90°, corresponding to k,=0. We
shall now describe how the correction factor corrects for the
probe pattern for far-field observation points near 6=7/2.

First assume that the field is produced by a point source
at the origin so that R;,=0. Then the expansion coefficients
F,(0) are zero for m#0, and only the correction factor
Dy(0) comes into play. For points on the scan cylinder near
the x-y plane, the output is roughly the same for all four
probes because the point source is in the direction of the
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main beam (see Fig. 3 with 8=0). The far field of the point
source at f=7r/2 is mainly determined by the probe output
near the x-y plane, so the correction factor Dy(0) should be
roughly the same for the four probes, as confirmed by Fig. 6.

Next assume that the field is produced by a point source
on the x axis at x=3a/4, for which the expansion coefficients
F,,(0) with |m| <150 are non-negligible. The probe sees this
point source at an angle B=37° when the probe is at
(x,y,2)=(0,a,0) and (x,y,z)=(0,—a,0). At all other obser-
vation points in the x-y plane, the probes sees the point scat-
terer at an angle S that is less than 37°. Consider the piston
probe with A=\. From Fig. (3) we see that 8=37° is near the
first null of this probe, so very low outputs are obtained
when the probe is near (x,y,z)=(0,a,0) and (x,y,z)=(0,
—a,0). To compensate for these low outputs, the correction
factor D,,(0) has a peak at |m|=120 and attains large values
around this peak. Hence, to compute some of the higher-
order expansion coefficients of the source F,,(0), the integral
over the scan cylinder 7,,(0) must be boosted by a large cor-
rection factor D,(0). These arguments can be repeated for
the other piston probes in Fig. 3.

This discussion shows that nulls and low sidelobe levels
in the probe receiving pattern result in large values of the
correction factor. Correction factors that vary significantly
with m, can often lead to errors in the computed far field
because some of the higher-order expansion coefficients of
the source F,, are computed as the product of a small number
that can be relatively inaccurate (the integral of the probe
output over the scan cylinder I,;) and a very large number

Thorkild Birk Hansen: Near-field measurements on truncated cylinder



(the correction factor D,,). Therefore, it is advantageous to
avoid probes that have nulls and low sidelobe levels in the
region of the sources.

In Sec. IV we show how the far field can be computed
from sampled values of the probe output on the scan cylin-
der. If the angular sampling rate is A¢, the far-field summa-
tion (6) includes the terms with |n| < /A (recall that the
spectrum in Eq. (6) is given in Eq. (28) as F,=D,l,). Hence,
by decreasing the sample spacing A ¢ the far-field error may

1

increase because more of the peaks of the correction factor
are included. This phenomenon is illustrated in Sec. V. Of
course, the sample rate A¢ must always be chosen small
enough to properly resolve the field of the source.

We shall now briefly discuss an approximate probe-
corrected formula obtained by inserting35

H(l) (k a) = (- 1)y™(~ i)ne—in arcsin(m/[kpa])Hg)(kpa) (31)

n—m

into Eq. (30) to get

Dk, =

An electromagnetic analog of Eq. (32) was derived by
Borgiottig’10 and subsequently rederived by Yaghjian.8 The
approximate formula (32) expresses the correction factor
D, (k) directly in terms of the receiving characteristic
R, (ky,k,) and avoids the use of the cylindrical receiving co-
efficients C,(k,) that occur in the exact formula (30). By
invoking the relation (13), the formula (32) expresses the
correction factor directly in terms of the probe far-field pat-
tern. For k,a> 1, expression (31) is accurate only for small
|| and values of |m| that are not too close to k,a. Hence, Eq.
(32) is accurate only for small probes with only a few non-
zero receiving coefficients C,(k,) and for sources with Ry,
not too close to a. The approximate formula (32) is sin-
gular when arcsin(m/[k,a])+m coincides with a null of the
receiving characteristic. These singularities correspond to
the “peaks” discussed above where the exact correction
factor attains large values but remains finite. The approxi-
mate formula (32) thus fails to correctly predict the values
of the correction factor near its peaks. However, it is a
valuable formula that avoids the use of the cylindrical
receiving coefficients and produces accurate far fields for
small probes whose patterns are null free. As we shall
demonstrate below, small probes have additional advan-
tages.

The fact that the exact correction factor is without sin-
gularities distinguishes cylindrical scanning from planar
scanning: In planar scanning the exact correction factor is
proportional to 1/R,, and thus has s1ngular1t1es at the nulls of
R,, as proven by Hansen and Yaghjlan This discussion was
conﬁned to far-field observation directions near f=/2. In
Sec. V we shall show how nulls in the probe pattern affects
the computed far field for observation points away from @
=7/2.

Hll. TRUNCATION OF THE SCAN CYLINDER

The exact expressions (8) and (28)~(30) for the expan-
sion coefficients F,(k,) involve an integration over an entire
infinite scan cylinder of either the pressure or the probe out-
put. Practical near-field measurements are carried out only
over a truncated scan cylinder, which we assume is given by

J. Acoust. Soc. Am., Vol. 119, No. 2, February 2006

4712Rp(kpcos[arcsin(m/[kpa]) + m],k,sin[arcsin(m/[k,a]) + w])H‘,,f)(kpa) )

(32)

-20S2=zp and ¢y= Pp<2m— ¢y, where z,>0 and 0< ¢,
< 7. The near-field data required by Egs. (8) and (28)—(30) is
therefore not available in practice. Fortunately, experience
has shown that very accurate far fields can be obtained in
certain regions from measurements on a truncated scan cyl-
inder. In this section we shall study the errors caused by
truncation and develop methods for reducing them. Trunca-
tion in the z and ¢ directions are considered in Secs. III A
and III B, respectively.

First we state a result from Hansen et al.?? that restricts
the range of observation angles for which we can accurately
compute the far field from a truncated scan: If the scanned
area is thought of as a transparent surface and the rest of the
infinite scan cylinder is opaque, then accurate far fields can
be achieved only in directions from which one can see the
entire source region. Similar results have been cited for pla-
nar and spherical scanning surfaces.>5>*

A. Truncation in the z direction

Typically the field outside the scanned area is neglected
and the exact expression (29) is approximated by

27—y
Inlk) ‘f J by(a, doz)e e ke dz,. (33)

It is thus assumed that the contribution to the integral (29)
from the region not covered by the scan is negligible. For
cylindrical near-field measurements of directive transducers
this assumption is often valid because the measurements are
set up so that very little energy is radiated in directions not
covered by the truncated scan cylinder. However, a nondi-
rective transducer or a scatterer may radiate significantly in
all directions, including the ones that are not covered by the
scan cylinder. Hence, it is not always a valid approximation
to neglect the contribution to the integral in Eq. (29) from the
region not covered by the scan.

We shall next present two sets of asymptotic correction
formulas that approximate the contribution from the region
of the scan cylinder with |z| > z,. Detailed derivations can be
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found in Hansen et al.? First we assume that the field on the
scan cylinder behaves roughly as a plane wave M as 7
— +00 and find that

20 (2T ) )
I(k) = f f . by(a, ¢,z e e *sd podz,
2

eikzzo 27—y )
TRl @t et

e—ikzzo 27—y ]
TR, e, (9

We use the term “edge-corrected” formula because the inte-
gral over the uncovered areas of the infinite scan cylinder are
approximated by integrations along the top and bottom edges
of the truncated scan cylinder.

The second set of correction formulas assumes that field
behaves as a spherical wave ¢*" as z— +o. The edge-
corrected formula for the spherical-wave assumption is*

0 (2mdo "y
1,(k;) '—'f f b,(a, &g, z)e M se*sd b dz,
=29 7 ¢o

ek 27-¢o y
—_—— b . - —inQs d
i(k cos 6y + k) 4 o(a, b= 20)e o,
ek 27—y

i b , &b, —ings d ,
ik cos 6y~ k;) J 4, (@, bs20)e &,

(35)

where cos 6y=z¢/ \/a2+z%. Note that the edge-corrected for-
mula (35) is singular for far-field observation directions
with =6, and 6=m/2— 6,. This follows from the far-field
expression (6) which shows that the far field in the direc-
tion (8, @) is determined from the spectrum evaluated at
k,=k cos 6. The edge-corrected formula (34) does not have
these singularities.

B. Truncation in the ¢ direction

For the angular truncation of the scan cylinder we can-
not derive asymptotic correction formulas similar to Egs.
(34) and (35) because no asymptotic expression suggests it-
self for the ¢ dependence of the field. Indeed, the ¢ depen-
dence of the field on the scan cylinder depends strongly on
the source shape, so we do not have a general expression for
bp(a,gb,z) that holds when ¢ is outside the scanned region
Do< p=<27— .

To determine the effect of ¢ truncation, insert the for-
mula (28) for the spectrum F,(k,) into the far-field formula
(6) to get

etk +o 2
P@Q@““r L by(a, ¢5,2;)G(k,a,0,¢
- ¢ {C))e s td g dz, (36)

where
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Gka,0,6:{CH)= 2 —
2w C,(k cos OHD

n-m

(_ l)me-i(m+l)1r/2eim¢

(ka sin 6)

(37

will be called the taper function. Equation (36) expresses the
far field of the source directly in terms of an integration over
the scan cylinder of the probe output multiplied by the taper
function. This expression is useful for determining the
¢-truncation errors but not efficient for actually computing
the far field since the fast Fourier transform (FFT) cannot be
fully exploited. We shall now examine the taper function
(37) for an ideal probe and for piston probes.

1. Ideal probe

For an ideal probe (C,=0 for n #0 and Cy=1), the taper
function (37) reduces to

400

Gilka, 0,¢) = ,,zw 27HD(ka sin 6)°

e—i(m+1)1r/2 eim¢
(38)

The piston probe with A=0.1\ is approximately an ideal
probe. By inspection, we see that the function
Gika, 0, p— p;)e"* ¢ equals the total field on a hard
circular cylinder that is illuminated by a plane wave with
amplitude (27i)~'ka sin @ that propagates in the - direc-
tion. Here, T is the unit vector for the far-field observation
direction. Hence, the far field of the source is obtained by
integrating over the scan cylinder the product of the near
field of the source and the total field on a hard cylinder,
which coincides with the scan cylinder and is illuminated by
a plane wave that originates at the far-field observation
point.

Jones*! used the Watson transform to prove that as
ka sin §— o the function Gy(ka, 6, ) decays exponentially
for m/2<|¢| <, has a transition zone around |¢|=7/2,
and behaves as

ka sin 0

Gi(ka, 0, ¢) -~ [ ]COS ¢e_ika sin @ cos ¢,

|| < w2, kasin@— + . (39)

Figure 7 shows G;(ka,®,¢) and its asymptotic approxima-
tion (39) for kasin #=25. The asymptotic approximation
works well even at this low value of ka sin 6.

The qualitative behavior of G(ka, 8, ¢) plotted in Fig. 7
for ka sin =25 remains the same for all larger ka sin 6.
Hence, the far-field formula (36) shows that the field in a
given direction with angle ¢ is determined by integrating the
field on the scan cylinder multiplied by an oscillating func-
tion of ¢, that is symmetric and decays away from ¢,=¢. In
other words, the cylindrical wave-function expansion of the
far field automatically applies an angular taper function to
the field on the scan cylinder. No taper function is applied for
the z, dependence. The asymptotic expression (39) shows
that the oscillations increase in frequency with increasing
ka sin 6.
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FIG. 7. Real (top) and imaginary (bottom) parts of the function G; and its asymptotic approximation for ka sin =25.

2. Piston probe ize the rapidly oscillating taper function, we computed an

Figure 8 shows an upper envelope of the taper function  upper envelope that equals the maximum magnitude of the
in Eq. (37) for piston probes with h=0.1\, h=0.61\, h=\,  taper function over 5° intervals.
and h=2A\. The scan cylinder radius is a=30\ and the obser- Let us first discuss the behavior of the taper function for
vation direction is §=90°, corresponding to k,=0. To visual-  h=0.1\ (this piston probe is almost an ideal probe whose

Upper envelope of taper function in dB

20f i
— b=0.1},
- -~ h=0.61}
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—e— h=2),

601 i

80 i

100 1 ] 1 | |
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0

FIG. 8. Upper envelope of the taper functions for a=30\ and 6=90° for piston probes with 2=0.1\, h=0.61\, k=X, and ~=2\. All non-negligible terms of
the expansion for the taper function are included.
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output equals the pressure). In the region from ¢=0° to ¢
=90° the taper function decays at a moderate rate from 30 to
about 5 dB. Beyond ¢=90° the decay is exponential
(creeping-wave region), and at ¢=180° the magnitude of the
taper function is below —100 dB. Hence, the probe output on
the scan cylinder at points that lie more than 90° away from
the far-field observation direction are attenuated by more
than 25 dB when the fields are measured with a piston probe
of radius A=0.1N. We shall later see that the strong taper
helps reduce truncation effects.

The taper functions for the piston probes with h
=0.61\, A=\, and A=2\ do not exhibit such rapid decay. For
example, the taper function for the piston probe of radius &
=0.61\ decays only 5 dB over the entire range from ¢=0°
to ¢=180°, and thus only a mild taper is applied to the probe
output. The values of the taper functions in Fig. 8 were com-
puted from the summation (37) with all non-negligible terms
included. For practical far-field calculations, the summation
in Eq. (37) is truncated at a mode number determined by the
size of the source region. This truncation of the summation
strongly affects the taper function, as will be demonstrated in
Sec. V.

C. Green’s function representation

Let us briefly discuss a far-field formula that is based on
the free-space Green’s function rather than the cylindrical
wave functions. From Hansen et al.’ it follows that the far
field can be expressed in terms of the pressure and its normal
derivative on the scan cylinder as

-aeikr +00 29
l 2 f J [ikf -p'p(r’)
7r J_» Jo

J -
+ —,p(r’)]e"k” d¢'dz’ .
ap

P(r,0,¢) -~ =

(40)

The normal derivative of the pressure can be related to the
velocity by the formula 3/ dp’ p(r')=iwpep’ - v(r'), where
Pmo 1 the mass density of the undisturbed fluid.

This formula is seldom used in near-field scanning be-
cause it requires that both the pressure and its normal deriva-
tive be measured. Unlike the formulas that are based on the
cylindrical wave functions, the formula (40) does not apply
an angular taper function to the field on the scan cylinder.
Hence, angular truncations of the scan cylinder would in
general affect Eq. (40) more than they affect formulas based
on cylindrical wave functions.

IV. SAMPLING THEOREMS AND COMPUTATION
SCHEMES

The formulas derived so far for the far field of the source
involve integrations of the probe output over the scan cylin-
der and infinite summations over angular modes. In this sec-
tion we discretize these formulas so that the far field of the
source can be computed from a finite number of probe-
output values sampled at regular intervals on the scan cylin-
der. As part of the discretization, we present sampling theo-
rems that determine the sample spacing required for accurate
far-field calculation.
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The scan cylinder is truncated and given in cylindrical
coordinates by p=a and |z| <z, and the field on the scan
cylinder is measured at the grid points expressed in terms of
the cylindrical coordinates as

$=(—1)A¢, €=12,...,N, (1)

and

z=(m-1)Az-zp, m=12,...,N,. (42)

The formulas of this section require the probe over the entire
360° range. If the scan cylinder is angularly truncated, one
simply inserts zeros into the array positions that corre-
spond to measurement points that are outside the scanned
area. Note that z, satisfies the relation zo=(N,—1)Az/2.
If every point on the scan cylinder is at least one wave-
length or so away from the nearest point on a nonresonant
source,” the sampling intervals A¢ and Az can be chosen as
follows:'”
N¢= 2 int(kRmin + nl),

Aj= 12\,—: 43)

(44)

where R, is the radius of the minimum cylinder, n,; is a
small integer, and A\ is the wavelength. In Eq. (43) the
function “int” denotes the integer value.

The sampling theorems show that the infinite summation
(6) can be replaced by the finite summation

itr Mo
> D, (k cos O)I,(k cos ) Pe i+ 1)I2,

n=—N,

p(r’0,¢) -~

(45)

where D, (k cos 0) is the correction factor defined in Eq.
(30), and N, is an integer that must be large enough to
include all the significient modes of a give source region.
When strong edge effects are present, Ny should be large
enough to prevent aliasing caused by the discontinuity of
the near-field data at the truncation edges.22 Since only
the values of I,(k cos 6) with |n| <Ny4/2 can be computed
accurately, one must chose No<N,/2.
Next we introduce the two-dimensional array

by(€,m) = b,(a,(~ 1)Ad,(m— 1)Az - z,),

€=12,....N, m=12,...,N, (46)

which contains the probe output b, at the grid points. A
straightforward discretization of the formula (33) for the
spectrum then gives
Ny N,
L(k,) = AquSeikzzOE 2 e""‘A"S(e'])e‘iszZ(""l)l;p(f ,n).
=1 m=1

(47)

Note that both the far-field formula (45) and the probe-
corrected formula (47) for the spectrum can be computed
efficiently with the FFT.

Thorkild Birk Hansen: Near-field measurements on truncated cylinder



We can also discretize the edge-corrected formulas (34)
and (35) to get

Ng N,
In(kz) =AzA¢eikZz02 2 e—inA¢(€—1)e—iszz(m—l)I';p(e,m)
=1 m=1
AzAgeli0 L% _
_ __2 e—mA«b(e—l)bp(e’l)
2 a
AzA¢e'”‘zzO Ne . ~
_ _________2 e—mAd)(f—l)bp(e,Nz)
2 £=1
2 N,
A¢e’kz30 ¢ A -
—-inA¢(£-1)
- e b,(€,1)
l(k + kz) =1 P
M%{: -indd(-Df (¢ N (48)
Tilk-k) = ° p(EN
when the field is assumed to behave as €%, and
Ny N,
I,,(kz) - AzAgbeikZzOE 2 e—inA¢(€—1)e—iszz(m—l)E'p(e,m)
=1 m=1
o N
AzA ikzg ® i _
_ &2 e'"‘A‘b(e’l)bp(e,l)
2 €=1
AzAge k0 Xs -
_ _____2 e—mA¢(€—1)bp(€’Nz)
2 =1
A¢eikzz0

Ng
= —inAqB(e—l)E' 2,1
i(k cos Gy + k) Z ¢ p(6:1)

; N,

A¢e—zkzzo [ A .

e —_— —inA$(t-Dp, (¢ N 49
i(k cos 6y — k,) o= ¢ p(E:N) (49)

when the field is assumed to behave as e*” and cos 6,
=z¢/ \/a2+z(2,. The second and third in Egs. (48) and (49)
ensure that the contributions from the top and bottom
edges are included only once. The number of operations
required to compute the spectrum from any one of the
formulas (47)-(49) is on the order of NN 1logy(Ny,N,).
Hence, the edge-correction terms do not significantly add
to the computational effort.

V. FAR-FIELD ERRORS FOR A POINT SOURCE

In this section we shall compute the far field of an
acoustic point source from near-field measurements on a
truncated scan cylinder. The field is measured with piston
probes of varying size and the probe output is computed
from the exact formula (22). Hence, if the scan cylinder is
untruncated, the computed far field equals the exact far field,
regardless of the size of the piston probe. The acoustic field
is generated by a single point source (i.e., a nondirective
source) located inside the scan cylinder, so the truncation
edges of the scan cylinder are illuminated by relatively
strong fields, and the truncation effects will be clearly vis-
ible. The scan cylinder is given by a=30\ and —40A<z
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TABLE L.

Average far-field error over the region 0< ¢<2 for §=m/2

h=0.1N  h=0.6IN h=N  h=2\
(%) (%) %) (%)
No edge correction 3.1 0.7 0.5 0.3
Plane-wage edge correction 09 0.2 0.1 0.1
Spherical-wave edge correction 13 0.2 0.2 0.1

<39.5\. Throughout, the sampling spacing in z is Az=\/2.
First assume that the point source is located at r;=12\y
—5\zZ.

We begin by investigating the improvements in far-field
accuracy achieved with the formulas that correct for the trun-
cations at the top and bottom edges of the scan cylinder. We
let the scan cylinder be untruncated in ¢ and chose Ny
=360 corresponding to an angular sample spacing of A¢
=1°. (With R;,=12\, the required sample spacing is about
2.3°.) The sample spacing in z is Az=\/2. We shall compare
the far fields obtained with four different probe sizes: h
=0.1\, h=0.61\, A=\, and A=2\. The exact far field of a
single point source located at r; is

ikr
po(r) ~ e HEr—. (50)

Table I shows the average error of the far field for 0=/2
and 0< ¢ <27 computed from this z-truncated scan using
Egs. (47)—(49).

We see that the edge-correction formulas significantly
reduce the far-field error for all sizes of the piston probe.
Moreover, the error is smaller for directive probes because of
the reduced magnitude of the probe output near the top and
bottom edges of the scan cylinder. In the remainder of this
section we employ the edge-corrected formula (48) based on
the plane-wave assumption.

Figure 9 shows the far-field error as a function of 6 for
¢=0 with the scan cylinder still untruncated in ¢. The error
is calculated at the angles §=arccos(k,/k) with increments of
k,/k equal to 0.0125 (these increments automatically come
out of the FFT when the sample spacing in z is A/2 and no
zero padding is applied). The vertical solid lines in Fig. 9 are
the limiting angles at which the line that begins at the point
source and ends at the far-field observation point touches the
upper and lower truncation edges of the scan cylinder. As
expected, outside these limiting angles the far-field error is
so large that the computed far field is useless.

The far-field error curves have spikes that correspond to
nulls in the probe patterns (see Fig. 3). These spikes are not
exactly symmetric because the point source is not in the
x-y plane. They result from the fact that the probe output is
very small at values of z for which the point source is near
the direction of a null. When the far field is computed in the
corresponding @ direction, the correction factor is large and
thus the errors caused by z truncation lead to an inaccurate
value for the far field.

We now compute the far field of the point source at 6
=1r/2 from measurements over the ¢—z truncated scanning
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area given by a=30N, —40N<z<39.5\, and 60°<¢  and (ii) A¢p=2° resulting in N,=180. Hence, the relevant
<300°. Figure 10 shows this scanning area as a solid circu-  taper functions are given by the summation in Eq. (37) trun-
lar arc. We shall compute the far field with two different  cated at |m| =180 and |m|=90. Figure 11 shows upper enve-
angular sampling spacings: (i) A¢=1° resulting in Ny=360, lopes of these taper functions for piston probes with A

30 - e
20 ~ -
10 - -
FIG. 10. Truncated scan cylinder with radius a=30A\.
y/ A of 7 The scanned region is the solid circular arc given by
60° < ¢<300°. The point source is located at (x,y,z)
=(0,12\,-5)\), and the two limiting angles are marked
10t : by -
20+ i
30+ .
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